Exercise Sheet 12

Discussed on 14.07.2021

Problem 1. (a) Consider the situation of the "local ring lemma" from lecture 22: A is a 2dimensional noetherian local integral domain and $a, b \in A$ are such that A/(a, b) is artinian. Show that if A is additionally normal, then (A/a)[b] = 0.

Hint: Recall that $A = \bigcap_{\mathfrak{p}} A_{\mathfrak{p}}$, where the intersection on the right ranges over all prime ideals $\mathfrak{p} \subset A$ of height 1.

(b) Let k be a field, let X be a 2-dimensional proper normal variety over k and let $Z_1, Z_2 \subset X$ be effective Cartier divisors whose intersection has dimension 0. Show that

$$\mathcal{O}_X(Z_1) \cdot \mathcal{O}_X(Z_2) = \operatorname{len}(Z_1 \cap Z_2).$$

Here $len(Z_1 \cap Z_2)$ denotes the length (i.e. dimension) of the coordinate ring of the affine scheme $Z_1 \cap Z_2$ over k.

(c) (Bezout's Theorem) Let k be a field, let $F_1, F_2 \in k[x, y, z]$ be homogeneous polynomials and denote $Z_i := V_+(F_i) \subset \mathbb{P}^2_k$. If $Z_1 \cap Z_2$ has dimension 0, show that

$$\operatorname{len}(Z_1 \cap Z_2) = \operatorname{deg} F_1 \cdot \operatorname{deg} F_2.$$

Problem 2. Let $k = \bar{k}$ be an algebraically closed field.

- (a) Let $f: X \to Y$ be a homomorphism of abelian varieties over k. Endow f(X) with the reduced scheme structure. Show that f factors through f(X) and that f(X) is itself an abelian variety.
- (b) Let $K := \ker(G \to H)$ be the kernel of a homomorphism of finite commutative k-group schemes. Show that $\deg G = \deg H \cdot \deg K$ if any only if H = G/K if and only if $G \to H$ is flat and surjective.
- (c) Use without proof that group varieties in characteristic 0 are smooth.

Let $f: X \to Y$ be a surjective homomorphism of abelian varieties over k. Prove that ker(f) is an abelian variety if and only if for all $n \in \mathbb{Z}_{\geq 1}$, the map $X[n] \to Y[n]$ is flat and surjective.

(d) Let $f_1: X_1 \to Y$ and $f_2: X_2 \to Y$ be surjective homomorphisms of abelian varieties over k. Show that $X_1 \times_Y X_2$ is an abelian variety if and only if $X_1[n] \times X_2[n] \to Y[n]$ is flat and surjective for all $n \in \mathbb{Z}_{\geq 1}$.